
MATHEMATICS OF COMPUTATION 
Volume 65, Number 215 
July 1996, Pages 1327-1337 

DENSITY COMPUTATIONS FOR REAL QUADRATIC UNITS 

WIEB BOSMA AND PETER STEVENHAGEN 

ABSTRACT. In order to study the density of the set of positive integers d for 
which the negative Pell equation x2 - dy2 = _1 is solvable in integers, we 
compute the norm of the fundamental unit in certain well-chosen families of 
real quadratic orders. A fast algorithm that computes 2-class groups rather 
than units is used. It is random polynomial-time in log d as the factorization 
of d is a natural part of the input for the values of d we encounter. 

The data obtained provide convincing numerical evidence for the density 
heuristics for the negative Pell equation proposed by the second author. In 
particular, an irrational proportion P = 1 - 1lj>1 odd(' - 2-i) .58 of the 
real quadratic fields without discriminantal prime divisors congruent to 3 mod 
4 should have a fundamental unit of norm -1. 

1. INTRODUCTION 

This paper is devoted to a numerical study of the solvability in integers of the 
negative Pell equation 

(1.1) 2 dy2 =-1 

when d ranges over the set of nonsquare positive integers. Euler showed in 1759 
that the equation with right-hand side +1 always has infinitely many solutions, 
and that the smallest nontrivial solution can be found from the continued fraction 
expansion of Vd. He also showed that (1.1) is solvable if and only if the period of 
this expansion is odd. If this is the case, there are again infinitely many solutions, 
and the smallest of them can be found from the expansion. Euler's result settles 
the solvability question for every specific d, but it does not tell us at all how often 
we should expect (1.1) to be solvable. This basic problem, which was raised in the 
present form by Nagell [8], appears to be of a very different nature. 

An obvious necessary condition for solvability of (1.1) is that -1 is a square 
modulo d, i.e., that d is not divisible by 4 or by a prime p _ 3 mod 4. Let us 
write S for the set of integers d > 1 that satisfy this condition. Then S consists 
of the integers that can be written as the sum of two coprime squares, and its 
distribution is well known. We have [10] 
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We will study how often the necessary condition d E S is sufficient for solvability of 
(1.1). More precisely, we will investigate whether the subset S- C S of integers d 
for which x2 - dy2 = _1 has integral solutions possesses a natural density inside S, 
i.e., whether the limit 

(1.2) Q = lim #{dcS d?X} 
X-400~ #{ dcES :d?<X} 

exists. If it exists, we of course want to know the value of Q as well. 
The analysis of the density (1.2) is the subject of two papers [11, 12] by the second 

author. The main results given there are conjectural as they involve unproved 
hypotheses on the distribution of the infinite Frobenius element in real quadratic 
class groups. They predict that the limit value Q exists, and that the convergence 
to the limit value Q is very slow. More precisely, we will not find the value of 
the quotient in (1.2) to be close to Q unless loglogX, the order of magnitude of 
the average number of prime factors of a number of size X, is large. As it is not 
feasible to check a number of values d of double exponential order of magnitude, 
our numerical investigation has to proceed by indirect means. 

Whatever way one chooses to proceed, one needs a fast algorithm to check 
whether (1.1) is solvable for a given integer d E S. This is clearly equivalent to the 
determination of the norm of the fundamental unit rd of the quadratic order Z[VH] 
of discriminant 4d. As for every c > 0, the regulator log Irid exceeds d2 - for infin- 
itely many d, one cannot expect to be able to write down id for large values of d. 
For the same reason, it is not feasible for large d to decide the solvability of (1.1) by 
computing the length of the period of the continued fraction of VH. Fortunately, 
it is possible to compute the norm of id without computing rd or the continued 
fraction of V-I. One observes that computing the sign of the norm is equivalent to 
deciding whether the class of the ideal generated by v4d in the strict class group of 
the quadratic order of discriminant 4d, which has order at most two, is in fact the 
trivial class. One can find this order by computing the 2-Sylow subgroup of the 
class group, and it was shown by Lagarias [5, 6] that if the factorization of d is part 
of the input, this leads to an algorithm to determine the solvability of (1.1) that 
is random polynomial-time in log d. We have implemented a modified version of 
this algorithm in the computer algebra system Magma, and we will briefly indicate 
in the next section how it works. As is pointed out in [7], the basic ideas of the 
algorithm go back to Redei. 

We start in ?3 with the somewhat simpler case of squarefree integers d E S. 
These form a subset E of large natural density Hp=1(4) prime(' -p2) .95 in S. 
We call this the fundamental case, as the frequency of solvability for d C A, i.e., the 
natural density of E n S- in A, is nothing but the natural density of the set of real 
quadratic fields with fundamental unit of norm -1 inside the set of real quadratic 
fields containing elements of norm -1. The main conjecture in [11] is that this 
density exists and equals the irrational Pell constant 

(1.3) P = 1 - JJ (I - 2-i) = .5805775582... 
j>1 odd 

It is based on the heuristic argument that the 'probability' for the negative Pell 
equation to be solvable for d E E depends solely on the 4-rank of the strict class 
group of the order Z[Vd]. 
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Unlike the class group itself, this 4-rank can easily be determined from the prime 
factors of d by a theorem of RIdei. In fact, our algorithm to decide the solvability 
of (1.1) computes it in its first step. Redei's theorem shows that integers d E S 
giving rise to high 4-ranks are so rare that they will not be found by picking 
random elements in S. On the other hand, it also shows that they can easily be 
constructed as products of primes that satisfy certain congruence conditions with 
respect to each other. In this way, we can produce large sets of d giving rise to 
certain 4-ranks, and such d come by construction in factored form, as required by 
the algorithm. As it happens, the conjectured densities for the solvability of (1.1) 
are very small for d E S yielding high 4-ranks, so in this case the numerical testing 
of the conjecture necessitates the handling of large numbers of large discriminants. 
For this reason, it is essential to have a fast algorithm to decide the solvability of 
(1.1). Implementation of an Euler-type algorithm as in [1] would never have yielded 
the current data. 

The final section describes similar computations for d E S that are not square- 
free. In this situation we study the norm of fundamental units in arbitrary real 
quadratic orders, and here the frequency for solvability is predicted to depend on 
the conductor of the order in the corresponding maximal order [12] as well. 

The computations in both sections show that the underlying hypotheses of [11] 
and [12] are very much in accordance with our numerical data. This of course does 
not prove that the values P and Q are the limit values they are conjectured to be, 
but it shows that these conjectures are very plausible. Especially in the fundamental 
case, there are various proven results in the direction of these conjectures, for which 
we refer to the last section of [11]. 

2. DECIDING THE SOLVABILITY OF THE NEGATIVE PELL EQUATION 

Let d E S be a nonsquare integer and OD = Z[Id] the quadratic order of 
discriminant D = 4d. It is elementary [11, Lemma 2.1] to check that the negative 
Pell equation is solvable for d if and only if the class F,, of Vd -OD is the trivial 
element in the strict class group of 9D. As is well known [3], the elements of 
this class group can be identified with the SL2(Z)-equivalence classes of the binary 
quadratic forms of discriminant D, and in this terminology (1.1) is solvable if and 
only if the anti-principal form -X2 + dy2 of discriminant D is SL2(Z)-equivalent 
to the principal form X2 - dY2. As Fo, has order at most two in the strict class 
group of OD, we are done if we can find a basis for the 2-Sylow subgroup CD of this 
class group and a representation of Fo, on this basis. By a basis of CD, we mean 
a finite number of nonzero elements xi E CD such that CD is the direct product of 
the cyclic groups (xi). 

The algorithm we use in this paper computes, for any nonsquare factored dis- 
criminant D _ 0,1 mod 4, a basis for the 2-Sylow subgroup CD of the strict class 
group of the quadratic order of discriminant D. Moreover, it efficiently computes 
the representation with respect to this basis for any given element x E CD. As the 
mathematical content of the algorithm is described in detail in [2], we will only give 
a very brief description here. 

From the factorization of D, one obtains an F2-basis X for the group of quadratic 
characters X: C = CD -> F2 with image in the field F2 of two elements. Such X 
are quadratic Dirichlet characters of conductor dividing D. If the elements of C are 
represented by binary quadratic forms, the value of X on the class of a form F is 
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the value taken by X on the integers coprime to D that are represented by F. The 
basis X consists of characters of prime power conductor. 

In addition, the factorization of D provides us with a set of so-called ambiguous 
forms, whose classes generate the 2-torsion subgroup C[2] of C. We do not in general 
know the relation between these generators, and in fact the whole purpose of our 
computation is to decide whether the class F,, E C[2] of the antiprincipal form is the 
trivial class. If we select one ambiguous form Fp for each prime divisor p of D (and 
two for p = 2 when 32 divides D), we obtain a set S of 2-torsion generators that 
has exactly one nontrivial relation. More precisely, we have a natural surjection 
Fs --> C[2] with an unknown 1-dimensional kernel. Even though we cannot see 
which ambiguous form in Fs is in the trivial class, the character pairing 

(2.1) Fs x FX > F2 

tells us which ambiguous forms are in 2C. The pairing (2.1) is completely explicit: 
for X E X of q-power conductor, with q :& p an odd prime, the value X(Fp) equals 
the Legendre symbol (P) with values taken in F2. Redei's theorem is the simple 
group-theoretic fact that the 4-rank of C equals the cardinality of X minus the rank 
of the F2-matrix 

(2.2) MD = (X(Fp))xEXFpES. 

What enables our algorithm to find the full 2-class group C is the observation of 
Gauss [4, art. 286] that if the class F of a form in C is in 2C, then one can find a form 
whose class in C is a 'square root' of F, i.e., twice its class equals F. This square root 
is usually not unique, and Gauss's algorithm, which employs a reduction procedure 
for ternary quadratic forms, does not necessarily yield a form in the trivial class if 
F is the trivial class in C. 

The construction of a basis for the 2-class group C proceeds recursively and is 
essentially a matter of linear algebra over F2. From the pairing (2.1) one readily 
computes a subset B C S that yields a basis for C[2]/(C[2] n 2C). One can then 
change the remaining elements of S by F2-linear combinations of forms in B to 
ensure that their classes in C are 'squares'. Using Gauss's algorithm, one now com- 
putes a square root of each of these forms. This yields a set S' of forms whose classes 
generate the 2-torsion subgroup of C/C[2]. As the group of quadratic characters on 
C/C[2] is the annihilator of Fs under the pairing (2.1), we can easily compute an 
F2-basis for this group. This brings us back to the original situation in which C has 
been replaced by the smaller group C/C[2]. A basis of C is obtained as the union of 
B and a basis of C/C[2]. In order to represent an element x E C with respect to this 
basis, we compute the unique F2-linear combination b of forms in B for which the 
class of x - b is in 2C and a form a whose class is a square root of x - b in C. Then 
we have x = b + 2a, and it suffices to write a with respect to the basis of C/C[2]. 

In our situation, we want to decide whether the element F,, is the trivial element, 
so we write it with respect to the basis of C that is being computed recursively. As 
soon as we discover during the computation that F,, does require a basis element in 
its representation, we know it is nontrivial and we stop. This implies that in many 
cases, we only have to perform part of the computation of C4d in order to decide 
the solvability of (1.1) for d. Especially in the fundamental case in the next section, 
where we test many d for which (1.1) is not solvable, this leads to a considerable 
reduction of the running time of the algorithm. 
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3. THE FUNDAMENTAL CASE 

In this section, we study the density problem (1.2) for the subset E C S of 
squarefree integers in S. It is conjectured in [11] that the limit 

(3.1) P = lim #{d 
d n S- d < X} 

X-4~00 #{ d ED: d?<X} 

exists and is equal to the value given in (1.3). If d ranges over the elements of A, 
then the fields Q(V'di) range over the real quadratic fields K for which, by the Hasse 
principle, -1 is in the norm image NK/QK*. Thus, P is the natural density of the 
set of real quadratic fields having a unit of negative norm inside the set of real 
quadratic fields containing elements of norm -1. The ordering in this case is by 
'radicand' d rather than by discriminant AK (which equals d for odd d and 4d for 
even d E E), but this is of no importance, as even and odd d are conjectured to 
yield the same density P. We will see this numerically later in this section. 

As stated in the introduction, it is not possible to check (3.1) numerically by 
computing the value of the quotient for large values of X. The conjectural value 
(1.3) of the limit is based on the fact that the average number of prime factors of 
d tends to infinity with d. However, this number grows asymptotically only like 
log log d, so it is never large for tractable d. For this reason, we do not check the 
conjecture directly but focus on the underlying heuristic argument instead. This 
argument states that the probability for the negative Pell equation to be solvable 
for d E E depends solely on the 4-rank of the strict class group of the quadratic 
field Q(V'di). More precisely, let us denote for e > 0 by YZ(e) C E the set of d E E 
for which the 4-rank of the narrow class group C of Q(Vii) equals e. Then the main 
conjecture in [11] is the following. 

3.2. Conjecture. For every e > 0, the subset E(e)- = E(e) n S- has natural 
density (2e+ - 1)-' in E(e). 

This conjecture is a theorem for e = 0, but an open problem for all e > 1. It 
can in principle be checked numerically by considering all d E E in a given large 
interval, as is done in [11] for those d for which the discriminant of Q(fd) is in 
one of the intervals [1, 2. 107] and [1010, 1010 + 2 107]. However, it then turns out 
that about 99.9% of all tested d have 4-rank e < 2, so we only get a numerical 
confirmation of our conjecture for small e. Moreover, testing a density (2e+l - 1)-I 
for large e involves testing a large number of d in order to make it possible to obtain 
an approximation of this small probability. 

Our algorithm is sufficiently efficient to handle large numbers of (factored) dis- 
criminants, so we only have to come up with many d E E for which C has some 
fixed 4-rank e. Fortunately, this is an easy task, as ReIdei's theorem tells us that 
the 4-rank of C can be read off from the Redei matrix (2.2). If we generate C [2] 
with the classes of the 'prime forms' {Fp}ppd and the quadratic characters on C by 
Legendre symbols Xq = (q) for odd primes q dividing d, the matrix MD consists of 
Legendre symbols Xq(P) with values in F2. If p and q coincide, one can compute 
the corresponding entry from the fact that the rows of MD add up to zero. 

The simplest way to produce a discriminant d E E of 4-rank e is to take the 
product of e + 1 primes that are not congruent to 3 mod 4 and all squares modulo 
each other. As we need very many d of this kind, especially for the higher values 
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of e, we have done the following. For each of the 22 primes p < 200 that are 
not congruent to 3 mod 4, we computed prime numbers P1 < P2 < ... < P20 by 
taking P1 = p and Pk > Pk-1 the smallest prime congruent to 1 mod 4 such that 
all pi with i < k are squares modulo Pk* In all cases, this yields sequences with 
07 < P20 < 108. Out of such a sequence, we can construct 20 ) values of d for 

which C(4d) has 4-rank e. For the values 2 < e < 9 we considered, these numbers 
increase with e as follows. 
e 2 3 4 5 6 7 8 9 

#d 1140 4845 15504 38760 77520 125970 167960 184756 

The large numbers for the higher e-values are necessary, as we expect to find only 
1 out of 2e+1 - 1 values of d with 4-rank e to be in S-, so the expected number 
Ne = (A20 )/(2e+1 - 1) of such d per sequence should not become too small to 
be 'measurable' with some accuracy. Note that the case e = 9 involves a 2-class 
group computation for 22. (20) = 4064632 discriminants that mostly have 40 to 50 
decimal digits. Moreover, these are large 2-class groups in the sense that their 4- 
rank is by construction very high. Even with our fast algorithm, this is still a rather 
formidable computing task. However, it can easily be run on parallel machines. In 
our case, we used about 50 Sun workstations at the University of Amsterdam. The 
results are presented in Table 3.3. 

3.3. TABLE. Solvability of the negative Pell equation for high 4-ranks 

P e= 2 3 4 5 6 7 8 9 

5 179 323 539 587 600 512 315 170 

8 172 277 493 596 599 493 315 168 
13 176 317 497 632 626 516 333 177 

17 180 347 486 611 584 485 325 187 

29 148 304 491 607 601 533 327 171 

37 158 322 501 601 608 506 368 194 

41 161 362 510 685 582 533 370 171 

53 148 320 471 598 600 476 304 192 

61 163 333 440 591 624 518 318 163 

73 187 309 526 629 615 511 353 156 

89 165 351 530 619 590 504 299 172 

97 164 325 505 605 598 472 326 178 

101 172 297 507 608 611 527 352 197 

109 165 295 502 620 622 487 349 179 

113 145 314 508 569 620 494 325 179 

137 165 303 519 630 604 475 320 187 

149 146 348 460 680 583 502 312 173 

157 173 364 460 629 611 461 361 187 

173 158 340 496 618 620 481 307 184 

181 156 325 514 634 617 489 311 173 

193 148 326 493 591 609 482 323 203 

197 167 314 486 604 588 489 336 178 

Ae 163.45 323.45 497.00 615.64 605.09 497.55 329.50 179.05 

Ne 162.86 323.00 500.13 615.24 610.39 494.00 328.69 180.60 

+.37% +.14% -.63% +.06% -.87% +.72% +.25% -.86% 

The first column has the prime p = P1 that is used to generate the sequence of 20 
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4cosquare primes'. The other columns have the value e of the 4-rank on the first 
line, then the number of d-values in Z(e)- for each of the 22 sequences, and on 
the bottom lines the average number Ae of d-values in Z(e)- per sequence, the 
expected number Ne defined above and the percentage by which Ae deviates from 
Ne. We see that deviations of 10% from the predicted values are not uncommon 
in single rows, but that the overall behavior is remarkably close to what conjecture 
3.2 predicts: the deviation of Ae from Ne is less than 1%. 

We note also that the even values of d, which occur on the line p = 8 and were 
excluded from consideration in [9], behave in no way different from the odd values. 

For still higher 4-ranks, the testing rapidly becomes unattractive, as the ex- 
pected density (2e+1 - 1)-1 decreases exponentially. Moreover, our basic setup 

as 0 creasess fore>9.W using 20 cosquare primes becomes inappropriate ase+ dce e > 9. We 
did perform the computations for e = 10. The expected number Ne is then as 
small as 82.05, and the computed values ranged from 67 to 103. They lead to a 
value Ae = 86.18, which deviates only +5.03% from its expected value. We found 
N11 = 30.76 too small to be worth trying. 

One may object against our approach of testing Conjecture 3.2 that the values 
of d we consider are rather special in the sense that M4d is the zero matrix for these 
d, so the 4-rank of C(4d) is equal to the 2-rank. We have therefore conducted a 
similar experiment for discriminants that do not have this property, i.e., we have 
constructed discriminants for which the 4-rank of C(4d) is fairly high and smaller 
than the 2-rank. To obtain such discriminants, we took, from each of the 22 se- 
quences of 'cosquare primes' constructed above, the set A of the first 10 primes and 
computed a set B of 10 other primes congruent to 1 mod 4 that are squares modulo 
each prime in A without paying attention to the quadratic character of the primes 
in B modulo each other. If we now form d = d1d2 by multiplying a product d1 of 
t, primes in A and a product d2 of t2 primes in B, the rank r of the Redei matrix 
M4d is equal to the rank of its submatrix Md2. Thus, the class group C(4d) will 
have 2-rank tl + t2- 1 and 4-rank tl + t2- 1 - r > t1. As we have not imposed 
any restrictions on the relative quadratic behavior of the primes in B, the rank r 
of Md2, which is in our situation the difference between the 2-rank and the 4-rank 
of C(4d), will in most cases be positive, and often not far from the maximal value 
t2- 1. For varying choices of t, and t2, one can thus obtain large families of values 
of d of the required type. 

In our numerical experiment, we varied t, in the range 3,4,... ,9 and fixed 
t2= 4. This yields 22. Ei=3 (10) = 21274 values of di, each to be multiplied with 

(10) = 210 values of d2 constructed from the corresponding set of primes B; in 
total this makes 4 467 540 values of d. The 2-rank e2 = tl + t2-1 = t, + 3 of the 
corresponding class groups ranges from 6 to 12, and the difference r between 2- and 
4-rank from 0 to 3. There are 22 . (140) = 4620 values of d2 that occur, and as the 
corresponding Redei matrices Md2 are expected to behave like 'random symmetric 
4 x 4-matrices' over the field of 2-elements, one expects the distribution over the 
possible r-values 3-2-1-0 to be close to 2021-2021-505-72, cf. [11]. The actual 
distribution in our example was 2106-1987-455-72. 

The following table presents the outcome of our experiment. We leave out the 
data for discriminants with M4d = 0, since they were tested in the preceding ex- 
periment, and there are only few of them among our current data. In each row 
the value of r E {3, 2, 1} is fixed, and in each column the 2-rank e2. The entry 
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corresponding to a pair (r, e2) lists the number of d C S- that was found and below 
that the number that is predicted by our conjecture. Note that the 4-rank for such 
an entry is e2 - r C {3, 4, ... , 11}, so we have constant 4-rank along diagonal lines 
(/) in the table. In smaller type, the total number of d's that were tested for this 
entry is indicated. Again, we see that the deviation from the expected values is 
relatively small as soon as this expected value is sufficiently large to be accurately 
'measurable'. This convinces us of the correctness of the basic Conjecture 3.2. 

3.4. TABLE. Solvability of the negative Pell equation for d with M4d # 0 

r e2 =6 7 8 9 10 11 12 

16680 14214 8244 3400 968 211 14 
3 16848 14266 8424 3482 991 185 21 

252720 442260 530712 442260 252720 94770 21060 

7625 6568 3795 1613 473 71 7 
2 7692 6623 3943 1636 467 87 10 

238440 417270 500724 417270 238440 89415 19870 

873 791 459 190 61 4 2 
1 867 752 450 187 53 10 1 

54600 95550 114660 95550 54600 20475 4550 

4. THE NONFUNDAMENTAL CASE 

As we mentioned in the introduction, the squarefree values of d form a set Z of 
large natural density 

B = H ~(1 _ p-2) 9 B= ]7 (-p)R .95 
p=1(4) prime 

in S. An arbitrary element in S can uniquely be written as f2d with d C Z 
squarefree and f C Z>o a product of primes congruent to 1 mod 4. We therefore 
have S = UfE.Sf with Sf = {f2d: d C E} and f ranging over the set F of 
odd positive integers without prime factors congruent to 3 mod 4. It is elementary 
to show that Sf has natural density f-2B in S, in accordance with the identity 

f -2 = B-1. We can find the natural density Q of S- in S defined in (1.2) 
from the natural densities of sf n s- in S for each f C F. For the main term 
coming from f = 1 the conjectural density equals P. B, with B as above and P 
the Pell constant from (1.3). This has been checked numerically in the previous 
section. It is conjectured in [12] that the natural density of Sf n s- in S for 
arbitrary f C F equals O (f ) . P. B, where b is the multiplicative function defined 
by 'b(f) = Hpuf prime O(P) and 

(4.1) O (P) 
2 2?(1?+21-vP)p 

2(p + 1) 

for p _ 1 mod 4 a prime number with exactly vp factors 2 in p-1. Setting bff) = 0 



DENSITY COMPUTATIONS FOR REAL QUADRATIC UNITS 1335 

for f C Z \ F, we obtain the value 

Q= (sb tI'(f)) P B 
f>l 

= P * H (1 + p2 (P)1 (1 - p2 ) 1.57339 
p prime 

p=1mod4 

for the density of S- in S. 
As in the fundamental case, we cannot check the conjectural value of Q by a direct 

computation. However, it is perfectly feasible to check the numerical adequacy of 
the constant OL(f) for any value of f C F. We can restrict to squarefree values of 
f, since f2d with f C Z and d c Z is in S- if and only if fd is in S- for the 
largest squarefree factor fo of f, cf. [12]. The value of OL(f) for f C F is based on 
two heuristic assumptions. 

4.2. Assumption. For every conductor f C F, the discriminants in Z and S- 
have the same distribution over the residue classes of Z/fZ. 

This assumption reflects the fact that for squarefree d, no relation is known to 
exist between the solvability of (1.1) and the congruence class of d modulo a prime 
p -1 mod 4. All we need for the conjecture in [12] is that for d C Z-, the values 
of the Legendre symbol (d) are independent for p C F, and the values 1, -1 and 0 
occur with relative frequencies p/(2p + 2), p/(2p + 2) and l/(p + 1). This density 
statement is easily seen to be true for the set of all squarefree integers, and it also 
holds for the set Z by a theorem of Rieger [10]. In order to check it numerically 
for the subset Z- C Z, we have determined for all d C Z considered in [11], i.e., 
those d for which the associated discriminant is contained in one of the intervals 
[1, 2. 107 ] and [1010, 1010 + 2. 107], the values of the Legendre symbols (d) for afew 
small p C F. There are 1696777 values of d for the first interval and 1420163 for 
the second. 

4.3. TABLE. Distribution of Legendre symbols for d in Z and Z- 

(d) p= 5 13 17 41 101 257 

.4167 .4643 .4722 .4881 .4951 .4981 
1 .4132 .4144 .4615 .4625 .4697 .4706 .4866 .4872 .4942 .4941 .4976 .4978 

.4250 .4253 .4668 .4674 .4741 .4749 .4891 .4897 .4956 .4947 .4981 .4974 

.4167 .4643 .4722 .4881 .4951 .4981 
-1 .4132 .4142 .4615 .4623 .4699 .4705 .4866 .4870 .4943 .4950 .4977 .4978 

.4253 .4245 .4668 .4667 .4751 .4747 .4891 .4890 .4951 .4962 .4980 .4988 

.1667 .0714 .0556 .0238 .0098 .0039 
0 .1735 .1714 .0770 .0753 .0604 .0589 .0268 .0258 .0114 .0109 .0047 .0044 

.1497 .1502 .0663 .0659 .0508 .0504 .0217 .0213 .0093 .0090 .0039 .0037 

Table 4.3 shows the relative frequencies for each p. The first line of each entry 
is the proven asymptotic fraction of d C Z with indicated value of (d). Within 
the accuracy of the table, this coincides with the computed fraction for the set of 
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all squarefree d in these intervals. The second line of the entry has the computed 
fractions for d C Z in each of the two selected intervals, and the third line the same 
fractions for d C E-. We see that the distributions for the sets Z- and Z do not 
differ substantially. We also tested for possible dependencies between values of (4) 
for our six primes p for d C Z-. They are known to be independent for d C Z, and 
we found no indication that the situation is different for E-. 

If p C F is prime, Assumption 4.2 implies that a fraction (2 + p)/(2p + 2) of 
all d C Z- has Legendre symbol (d) + 1 and a fraction p/(2p + 2) has (d) = 1. 

For d C Y- satisfying (d) + 1, we always have p2d C S-. In the other case 

however, when we have (d) = 1, we need a second heuristic assumption, which is 
an equidistribution assumption on fundamental units of real quadratic fields modulo 
a fixed conductor that is explained in [12]. For the basic case of a prime conductor 
it is the following. 

4.4. Assumption. Let p E F be a prime number with vp factors 2 in p - 1. Then 
fd C E3 p2d C S-} has natural density 2-vP in 3-. 

Under the natural asumption that these frequencies are again independent mod- 
ulo different p, we obtain the value in (4.1) for O (f) since an elementary argument 
[12, Lemma 3.1] shows that we have f2d E S- for d E Z- if and only if p2d is in 
S- for all prime divisors plf. 

In order to test Assumption 4.4, we determined for the values d E Z- from each 
of the intervals used in compiling Table 4.2 and a few well-chosen p E F the number 
of discriminants d that have p2d C S- among those that satisfy (d) = 1. Table 4.5 
shows the fractions obtained. 

4.5. TABLE. Fraction of d C Z- with (d) = 1 and p2d C S 

p VP fraction value 2Vp 1P value 

5 2 286619/573486 .49978 .99956 
231540/462884 .50021 1.00042 

41 3 164790/659959 .24970 .99879 
133209/533024 .24991 .99965 

17 4 79531/639735 .12432 .99455 
64876/516857 .12552 1.00416 

97 5 41242/667995 .06174 .98784 
33793/538960 .06270 1.00321 

193 6 20902/649973 .03116 1.02906 
16949/541603 .03129 1.00141 

257 8 5243/672114 .00780 .99850 
4248/541435 .00785 1.00426 

65537 16 24/674073 .00004 1.16669 
10/544213 .00002 .60212 

The final column lists the value 2VP- - (fraction), which is conjecturally close to 
1. The behavior of the fractions in Table 4.5 is again as good as we may reasonably 
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expect. This convinces us of the correctness of the conjectural values of b(f) for 
all f > 1, and consequently of the validity of the conjectures in [12]. 
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